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The goal of this lecture is to amplify the hardness of problems. In complexity theory, it has been
shown that many problems are ”hard” based on worst case analysis. i.e. there is no computationally
efficient way to solve all instances. However, in cryptography we are looking for the problems that are
”hard” on average. In this lecture, we will show that if a problem is hard on at least a constant fraction
of its input, we can turn it into an average case hard problem based on Yao’s Xor Lemma.

1 Preliminaries

Assume we are given a δ-biased coin where δ ≤ 1
2 (i.e. Pr[head] = δ). If we simply predict ”tail” for

one toss of the coin, then we will be right with probability 1− δ. We can predict the parity of k tosses
with probability ≈ (1 − 2δ)k. So, when k goes to the infinity, the probability of predicting correctly is
one half (just like answering randomly).

So, it seems that solving k independent instances of a problem is harder than solving one. However,
this is not true in general. Assume f(x) = Ax where A is a n × n matrix and x is a vector of size
n. Clearly, we can compute f in θ(n2). Hence we’d expect that solving n instances would take θ(n3).
However, computing n instances of this function is exactly equivalent to multiplying two n×n matrices
and we know that there are algorithms for matrix multiplication with running time of o(n3) < θ(n3).

Today all functions are from {+1,−1}n into {+1,−1}. Here is a definition that we need in this
lecture.

Definition 1 A function f : {+1,−1}n → {+1,−1} is δ-hard on distribution D for size g, if for any
Boolean circuit C with at most g gates, Prx∈D{+1,−1}n [C(x) = f(x)] ≤ 1 − δ i.e. any circuit of size at
most g makes mistakes on at least δ fraction of the domain.

Assume f is a δ-hard function; C is a circuit of size at most g; and D is the uniform distribution. If
δ = 2−n then C(x) 6= f(x) for at least one input x. If δ = 1

2 then no circuit does better than random
guessing. Obviously, we can always get δ ≤ 1

2 with C ≡ 1 or C ≡ −1.
Recall that in the previous lecture, we had:

RC(x) =

{
+1 if C(x) = f(x)
−1 otherwise.

Assume M is a measure on the domain {+1,−1}n. Let |M | denote
∑
x
M(x). We define µ(M) = |M |

2n .

Moreover, DM is a distribution such that for any x, D(x) = M(x)
|M | . The advantage of M is denoted by

Advc(M) and it is equal to
∑
x
RC(x)M(x).

Definition 2 Consider a function f : {+1,−1}n → {+1,−1} and a measure M . If for any circuit C
of size at most g, AdvC(M) < ε|M | (or equivalently Prx∈DM

{+1,−1}n [C(x) = f(x)] ≤ 1
2 + ε

2), then f is
ε-hardcore on M for size g.

Suppose the measure M in the above definition is a characteristic function of a set S i.e.

M(x) =

{
1 if x ∈ S,
0 otherwise.

Or equivalently, for an x ∈ S, DM (x) = 1
|S| . So, we can define ε-hardcore based on set S as follows:
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Definition 3 A function f : {+1,−1}n → {+1,−1} is ε-hardcore on a set S for size g, iff for any
circuit C of size at most g

Pr
x∈US

[C(x) = f(x)] ≤ 1

2
+
ε

2
.

2 Yao’s Xor Lemma

Theorem 4 Assume f : {+1,−1}n → {+1,−1} is δ-hard for size g on the uniform distribution. Then

for an ε ∈ (0, 1), there exists an M such that µ(M) ≥ δ and f is ε-hardcore on M for size g′ = ε2δ2g
4 .

Proof Intuitively, the theorem says that if we have a function whom any circuit of size at most g
computes wrongly some of the time, then for some distribution, any circuit of a bit smaller size than g
will make mistakes almost half of the time (for good setting of ε).

To prove this theorem we follow the boosting outline. Assume there is no such M . Thus, for all M
with µ(m) ≥ δ, f is not ε-hardcore for size g′. By definition, there exists a circuit C of size g′ where
Prx∈DM

{+1,−1}n [C(x) = f(x)] > 1
2 + ε

2 or equivalently, AdvC ≥ ε|M |. This means that we have a weak
learner for f on any input distribution DM. By what we had in previous lecture, the majority function
of 1

ε2δ2 circuits of size at most g′ will predict f with error at most δ. The total size of these circuits is at

most g
4 and we can construct the majority function with the 3g

4 remaining gates. So, there is a circuit
of size at most g that predicts f well and this contradicts the fact that f is δ hard.

Theorem 5 If M is ε-hardcore measure for size 2n < g′ < ε2δ2

8
2n

n , then there exists a 2ε-hardcore set
S for f for size g′ with |S| ≥ δ2n.

Proof It has been shown in literature that the number of circuits of size g′ is significantly less
than 1

4e
2n.ε2δ2 . Pick S randomly according to DM. Let MS denote the characteristic measure of

S. Since S is drawn form DM , ExpS [AdvC(MS)] = AdvC(M) ≤ ε|M |. It suffices to show that
Pr[any C of size g′ has 2ε|M | advantage] is small. We know

Pr[any C of size g′ has 2ε|M | advantage] ≤ #circuitsPr[a circuit of size g′ has 2ε|M | advantage]

But we know that the expected AdvC(MS) is less than ε|M |. Thus, we can prove this by Chernoff
bound.

Theorem 6 [Yao’s XOR Lemma] Given a function f , we can define f⊕k(x1, . . . , xk) ≡ f(x1)⊕· · ·⊕
f(xk). If f is ε-hardcore for a set H of size at least δ2n for size g+ 1, then f⊕k is ε+ 2(1− δ)k-hardcore
for size g on all inputs.

Proof Assume not. Then there exists a circuit C of size at most g gates such that

Pr
x1,...,xk

[C(x1, . . . , xk) = f⊕k(x1, . . . , xk)] ≥ 1

2
+
ε

2
+ (1− δ)k.

to prove the above theorem, we want to show that for any H such that |H| ≥ δ2n, we will get a circuit
C ′ with at most g + 1 gates which predicts f with probability greater than 1

2 + ε
2 on H. So, f is not

ε-hardcore.
Suppose E denotes the event that C(x1, . . . , xk) = f⊕k(x1, . . . , xk). Let Am denote the event that

exactly m of x1, . . . , xk are in H. Since |H| ≥ δ2n, Prx1,...,xk
[A0] ≤ (1− δ)k. Also, we know:
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Prx1,...,xk
[E] = Prx1,...,xk

[E and A0] + Prx1,...,xk
[E and A0]

≤ Prx1,...,xk
[A0] + Prx1,...,xk

[E and
⋃
m>0Am]

≤ (1− δ)k + Prx1,...,xk
[E and

⋃
m>0Am]

≤ (1− δ)k +
∑
m>0

Prx1,...,xk
[E and Am]

≤ (1− δ)k +
∑
m>0

Prx1,...,xk
[E|Am] Prx1,...,xk

[Am]

Recall that Prx1,...,xk
[E] ≥ 1

2 + ε
2 + (1 − δ)k, we have

∑
m>0

Prx1,...,xk
[E|Am] Prx1,...,xk

[Am] ≥ 1
2 + ε

2 .

Consider that
∑
m>0

Prx1,...,xk
[Am] = 1 − Prx1,...,xk

[Ao] ≤ 1. Thus, by averaging, there exists an m such

that

Pr
x1,...,xk

[C(x1, . . . , xk) = f⊕k(x1, . . . , xk)|Am] ≥ 1

2
+
ε

2
.

Now, we can construct an idealized circuit to compute C(x) for x drawn from uniform distribution
on H.

Idealized circuit:

1. Pick x1, . . . , xm−1 ∈R H

2. Pick ym+1, . . . , yk ∈R H

3. Permute x1, . . . , xm−1, x, ym+1, . . . , yk via random permutation π. Let z = π(x′is, y
′
is, x).

4. Call C on z.

5. Output C(z)⊕ b where b ∈ {+1,−1}.

Note that if x ∈ H, exactly m elements in z are in H i.e. Am is happening. Thus,

Pr
z

[C(z) = f⊕k(z)] = Pr
x1,...,xk

[C(x1, . . . , xk) = f⊕k(x1, . . . , xk)|Am] ≥ 1

2
+
ε

2
.

By averaging again, there exist x1, . . . , xm−1, ym+1, . . . , yk, and π such that

Pr
x

[C(z) = f⊕k(z)] ≥ 1

2
+
ε

2
.

Now, let b = f(x1)⊕ · · · ⊕ f(xm−1)⊕ f(ym+1)⊕ · · · ⊕ f(yk). So, if C(z) = f(z), then f(x) = C(z)⊕ b.
Note that we may not know what b is. However, we know that for fixed x1, . . . , xm−1, ym+1, . . . , yk, there
is a b ∈ {+1,−1} such that this equality holds. So, let C ′ be the circuit that always outputs C(z) ⊕ b.
Consider b as its internal parameters. As we showed above,

Pr
x

[C ′(x) = f(x)] ≥ 1

2
+
ε

2

. Also, C ′ has only one gate more than C (because of XORing with a constant b). Therefore, C ′ is of
size g + 1 which contradicts the fact that f is ε-hardcore for H. Hence, the proof is complete.
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